

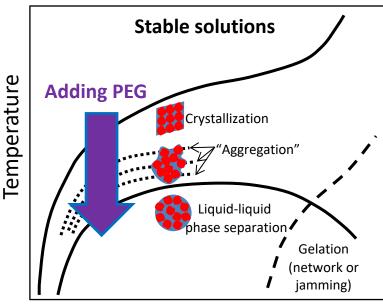
Nimble JuniorTM

High Throughput Evaluation of Protein Solubility

Nimble Junior™

Quick Automated Assessment of Protein Solubility on a Microplate

Same day optimal buffer/pH identification using low amount of protein


- Fast but rigorous assessment of protein solubility
- Ready-to-use formulation matrices
- When protein sample is limited
- Easy setup, automated measurement and data analysis

How Nimble JuniorTM Works

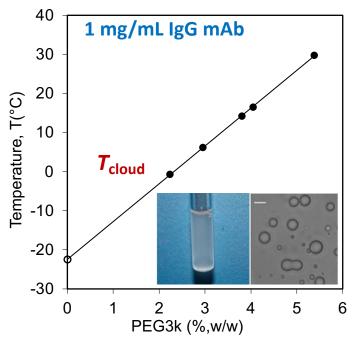
- Nimble Junior evaluates protein solubility through protein precipitation from liquid-liquid phase separation (LLPS) induced by polyethylene glycol (PEG).
- PEG-induced LLPS method is an established and well-recognized thermodynamic method.

Protein concentration Wang et. al. J. Chem. Phys., 139, 121904 (2013) ©ProStabilis, Inc. Our tech is validated by these peer-reviewed nonsponsored publications:

- Scannell et. al. *Pharm. Res.,* 38(11), 1947 (2021) (*Eli. Lily*)
- Latypov and Wang, *Methods in Mol. Bio.*, 2039 , 39 (2019) (*Sanofi*)
- Chai et. al., mAbs, 11(4), 747 (2019)

(Eli. Lily)

• Wang et. al., *Langmuir*, 33, 7715 (2017)


```
(Hoffmann-La Roche)
```

- Rowe et. al. *Biophysical J.* 113, 1750 (2017)
 (*MedImmune*)
- Wang et. al. *Mol. Pharm.*, 11(5), 1391 (2014) (*Amgen*)
- Li et. al. *Protein Sci.*, 22(8), 1118 (2013) (*Pfizer*)
- Gibson et. al. *J. Pharm. Sci.*, 100(3), 1009 (2011) (*Johnson & Johnso*₃)

LLPS T_{cloud} and Solubility

• The liquid-liquid phase separation temperature T_{cloud} ranks protein solubility in different formulations.

Wang et. al. J. Chem. Phys., 139, 121904 (2013)

• A higher *T*_{cloud} indicates lower solubility, which correlates with various issues including crystallization, aggregation, gelation, and liquid-liquid phase separation in the formulation.

Pre-Formulation Screening

- Nimble Junior™ runs experiments and analyzes data automatically.
- 10 minutes hands-on time, 1.5 hours experiment runtime:

Step One	ADD kit reagents and Incubate 8 min	
Step Two	ADD your protein, MIX, and Click RUN	
Step Three	LEAVE the rest to Nimble Junior, Get your results	
	in 1.5 hours	

- Select a reagent zone in the kit plate that is appropriate for the protein to be evaluated.
- For the Protein stock solution
 - Add a stock protein solution to the kit reagents to achieve a final concentration of \leq 1 mg/ml.
 - Same size proteins and same protein concentration need to be used for all samples in one experiment.

Formulation Kits*

*Patent Pending

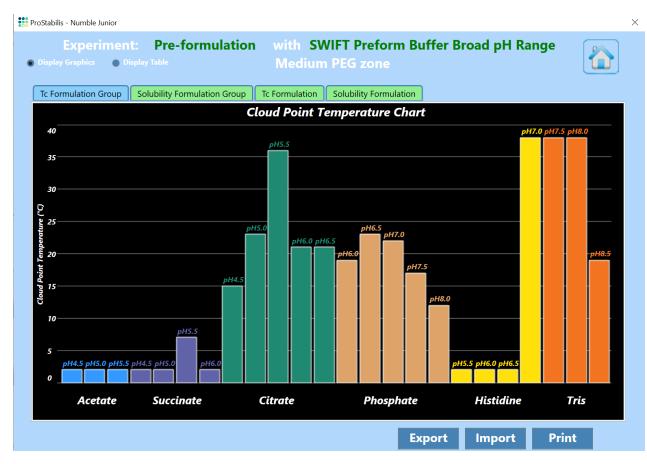
ProStabilis offers pre-made Formulation Kits.


Example Kit Selection:

- SWIFTTM Buffer/Broad pH Range Kit (Cat. # PS2-PFK-01)
 - With 6 most popular buffers covering 24 formulations from pH 4.5 to 8.5
 - Acetate 4.5 5.5
 - Succinate 4.5 6.0
 - Citrate 4.5 6.5
 - Histidine 5.5 7.0
 - Phosphate 6.0 8.0
 - Tris 7.5 8.5
 - Different reagent zones in one kit plate allow optimization for a specific protein, and for assessment across poorly and highly soluble proteins.
 - 1.5 mL of formulation reagent provides for 15 experiments.

Case I: Buffer/pH Screening for BSA

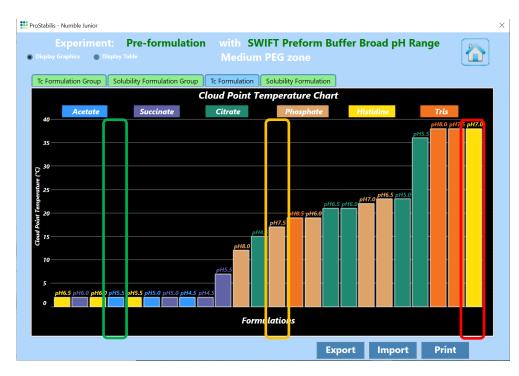
Nimble JuniorTM ranks protein solubility by T_{cloud} : Lower T_{cloud} , \Rightarrow Higher solubility



- The isoelectric point of Bovine Serum Albumin (BSA) is \sim 5.
- Nimble Junior detects that BSA has higher solubility at pH > 6.0 in all buffers.
- At pH 6.0, BSA is more soluble in succinate and citrate than in phosphate or histidine. At pH 5.5, BSA is more soluble in citrate than in succinate.

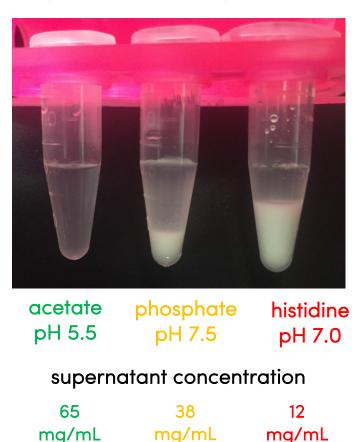
Case II: Buffer/pH Screening for a mAb

Formulation buffer screening for a pharmaceutical mAb (pl = 7)



- Nimble Junior[™] detects that this mAb has higher solubility at low pH.
- At pH 6.0, this mAb is more soluble in succinate and histidine than in phosphate and citrate.

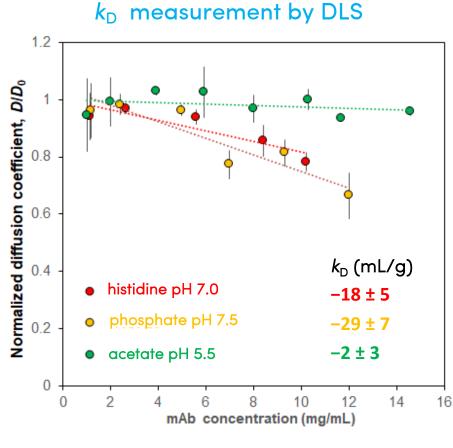
Case II: Buffer/pH Screening for a mAb



Nimble Junior[™] results agree with the direct solubility test by ultrafiltration

3 representative formulations with *high*, *medium*, and *low* solubility of this mAb detected by Nimble Junior

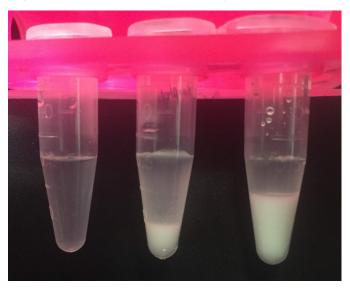
After up-concentration by ultrafiltration



mg/mL

mg/mL

Case II: Buffer/pH Screening for a mAb


 $k_{\rm D}$ measurement for this mAb only differentiates acetate buffer; phosphate and histidine buffers are within the experimental error

More negative $k_D \Rightarrow$ stronger attraction

Up-concentration by ultrafiltration

Formulation Made Easy

acetate	phosphate	histidine
pH 5.5	pH 7.5	pH 7.0
superno	atant concenti	ration
65	38	12
mg/mL	mg/mL	mg/mL

Specifications

ltem	Specification
Sample temperature	0 °C - +90 °C
Light source	490 nm
Power	95 – 260 V, 50 – 60 Hz, 10 A
Dimensions	321 W x 397 D x 336 H (mm)
Weight	12 kg

ProStabilis, Inc. Cambridge, MA 02140, U. Nimble Junior™

Cambridge, MA 02140, U.S.A. www.prostabilis.com/nimble-junior **E**

Phone: +1 (617) 216.3606 Email: info@prostabilis.com

©ProStabilis, Inc.

Version H